Finitely additive representation of L spaces

نویسندگان

  • Nabil I. Al-Najjar
  • Steven G. Krantz
چکیده

Let λ̄ be any atomless and countably additive probability measure on the product space {0,1}N with the usual σ -algebra. Then there is a purely finitely additive probability measure λ on the power set of a countable subset T ⊂ T̄ such that Lp(λ̄) can be isometrically isomorphically embedded as a closed subspace of Lp(λ). The embedding is strict. It is also ‘canonical,’ in the sense that it maps simple and continuous functions on T̄ to their restrictions to T . © 2006 Elsevier Inc. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fatou Properties of Monotone Seminorms on Riesz Spaces

A monotone seminorm p on a Riesz space L is called a Fatou if p(a„)tp(«) holds for every u e L and sequence {u„} in L satisfying 0 < un\u. A monotone seminorm p on L is called strong Fatou if p(u )tp(u) holds for every u e L and directed system {«„} in L satisfying 0 < «„tu. In this paper we determine those Riesz spaces L which have the property that, for any monotone seminorm p on L, the large...

متن کامل

Some Recent Results in Finitely Additive White Noise Theory

We present a short survey of some very recent results on the finitely additive white noise theory. We discuss the Markov property of the solution of a stochastic differential equation driven directly by a white noise, study the Radon-Nikodym derivative of the measure induced by nonlinear transformation on a Hilbert space with respect to the canonical Gauss measure thereon and obtain a represent...

متن کامل

Finitely Additive Supermartingales

The concept of finitely additive supermartingales, originally due to Bochner, is revived and developed. We exploit it to study measure decompositions over filtered probability spaces and the properties of the associated Doléans-Dade measure. We obtain versions of the Doob Meyer decomposition and, as an application, we establish a version of the Bichteler and Dellacherie theorem with no exogenou...

متن کامل

Smoothness Conditions on Measures Using Wallman Spaces

In this paper, X denotes an arbitrary nonempty set, a lattice of subsets of X with ∅, X∈ , A( ) is the algebra generated by and M( ) is the set of nontrivial, finite, and finitely additive measures on A( ), and MR( ) is the set of elements of M( ) which are -regular. It is well known that any μ ∈M( ) induces a finitely additive measure μ̄ on an associated Wallman space. Whenever μ ∈MR( ), μ̄ is c...

متن کامل

Strictly positive measures on Boolean algebras

We investigate strictly positive finitely additive measures on Boolean algebras and strictly positive Radon measures on compact zerodimensional spaces. The motivation is to find a combinatorial characterisation of Boolean algebras which carry a strictly positive finitely additive finite measure with some additional properties, such as separability or nonatomicity. A possible consistent characte...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007